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Introduction

The thermal and mechanical behavior of the gap between the fuel and cladding plays an extremely important role in
determining the response of light water reactor (LWR) fuel under irradiation. This is especially true during situations
when pellet-cladding mechanical interactions (PCMI) have a significant effect on the behavior of the fuel/cladding
system. The BISON code, which is being used as the fuel performance simulation tool for the CASL program, employs
contact detection and enforcement algorithms to realistically simulate the thermal and mechanical interactions across
the fuel/cladding gap in LWR fuel. These contact algorithms permit accurate representation of these interactions even
when there is significant relative movement between the two surfaces, which is typically the case in many regions of
an LWR fuel rod.
This report summarizes work done during the 2017 fiscal year to further improve the accuracy and robustness of the
contact enforcement algorithms in BISON. This work will benefit all BISON simulations, but will particularly benefit
simulations scenarios where PCMI is of interest. Work was done in the following areas:

• Mortar Method for Thermal Contact EnforcementMechanical and thermal contact are currently enforced in
BISON using node/face contact constraints. While node/face contact is relatively straightforward to implement,
it suffers from a number of accuracy and stability issues. During this fiscal year, the first steps were taken to
implement a mortar algorithm that enforces contact using face/face constraints. This method has the potential
to significantly improve the mechanical and thermal solutions, especially in the vicinity of the pellet/cladding
interface, which will lead to improved accuracy in PCMI simulations. It is expected to also overcome issues
with nonphysical spatial oscillations in the thermal and mechanical solutions along the length of LWR fuel rods.
The current work has focused on using this method for enforcement of thermal contact in 2D models, but this
approach can be extended to work in 3D and for mechanical contact enforcement.

• Augmented LagrangeMultiplier Method forMechanical Contact Enforcement BISON currently offers two
main options for the method used to enforce mechanical contact constraints: penalty and kinematic. The penalty
method is the simplest approach, representing contact interactions as springs with a user-defined stiffness. The
drawback of the penalty approach is that when contact occurs, forces must be accompanied by penetration, which
can be significant depending on the penalty factor chosen. The kinematic approach avoids this issue, but can
suffer from convergence robustness issues, especially for frictional contact. The Augmented Lagrange Method
(ALM) performs a series of solutions in which a penalty approach is used to enforce contact interactions during
the nonlinear iterations. Once the solution is obtained, it is modified to remove those nonphysical penetrations.
This process is iteratively repeated until there is no longer a need to modify the solution. This approach is
expected to improve the robustness of frictional mechanical contact enforcement.
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• Improvements to Contact Search Robustness In BISON’s contact search algorithm, a set of faces on the master
surface nearest to a slave node is stored at the beginning of either a time step or the entire analysis, depending on
the options used. The contact search only considers interactions of the slave node with this set of faces (known
as the contact patch). This is primarily done for efficiency, as it greatly reduces the cost of the search performed
at each iteration, and allows for pre-allocation of off-diagonal entries in the preconditioning matrix for contact.
However, if a node slides out of that original patch during the nonlinear iterations within a step, there was no
provision in the algorithm to enforce that constraint. So if an insufficiently large patch was used, situations could
arise when contact would not be enforced on some nodes when it should have been. To address this issue, the
contact search has been modified to better handle those cases, to ensure that contact is always enforced when it
should be.

The details of the developments in these areas are described in corresponding sections of this report.
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1 Mortar Method for Thermal Contact Enforcement

Themortar finite elementmethod has been used formany years in a variety of applications, including the enforcement of
continuity conditions across decomposed domains [1], the implementation of Dirichlet boundary conditions [2–4], ob-
taining improved estimates of surface fluxes [5], and for solving large deformation contact mechanics problems [6–11].
There is a currently great deal of interest in developing more robust mechanical and thermal contact solution strategies
in the BISON fuel performance simulation application, and schemes based on the mortar finite element approach ap-
pear to be a promising avenue of development. There are a number of challenges associated with the development of a
robust Lagrange multiplier based formulation of the mortar finite element method which can be tackled using the rela-
tively simple framework of thermal contact problems, before moving on to the “real” application of thermomechanical
contact. In this section, we describe several aspects of our mortar finite element method implementation for solving the
thermal contact (also known as the gap heat conduction) problem, which is based on the work of Yang et al. [12, 13].

1.1 Heat conduction in multiple bodies

The following description closely follows the formulation of Gitterle [14], and is also related to methods described in
other works [15, 16]. We consider the problem of computing the temperature distribution in two regions Ω(1), Ω(2)
with scalar thermal conductivities k(1), k(2), which are either in contact or separated by a small gap. We shall use
parenthetical superscript indices throughout to refer to the region on which a particular quantity is defined.
The temperature in each region satisfies the heat conduction equation

−∇ ⋅ k(m)∇T (m) = f (m) ∈ Ω(m) (1)
for m = 1, 2, where f (m) is a specified heat source in body m. The regions are in contact (or near-contact) on a shared
segment of their boundaries denoted by Γ(1)C and Γ(2)C , respectively. We assume that Dirichlet and Neumann boundary
conditions for body m are specified on Γ(m)D and Γ(m)N , respectively, i.e.

T (m) = T (m)D ∈ Γ(m)D (2)
−k(m)∇T (m) ⋅ n̂(m) = q(m)N ∈ Γ(m)N (3)

where T (m)D and q(m)N are given data, and n̂(m) is the outward unit normal on Ω(m). For simplicity, we also assume that
these regions are non-overlapping:

)Ω(m) = Γ(m)D ∪ Γ(m)N ∪ Γ(m)C (4)
∅ = Γ(m)D ∩ Γ(m)N ∩ Γ(m)C (5)

The thermal conductivities k(m) may depend on both spatial location and temperature. The bodies and their different
boundaries are shown schematically in Fig. 1.
We will denote the heat flux (per unit area) through the surface Γ(m)C by q(m)C . If we assume there is no frictional
dissipation and no energy stored in the contact interface, then the heat fluxes through Γ(m)C can be expressed in terms of
the temperatures in the respective bodies as

q(1)C = ℎ(T (1) − T (2)) (6)
q(2)C = −ℎ(T (1) − T (2)) (7)

where ℎ is an appropriate heat transfer coefficient. Obviously, in this simple situation, we have:
q(1)C = −q(2)C (8)
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Γ(1)D

Γ(2)D

Γ(1)N

Γ(2)N

Γ(1)C
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Ω(1)

Ω(2)

Figure 1: Boundary conditions and configuration of the bodies.

The weak formulation of (1) proceeds by first defining appropriate test and trial spaces
 (m) ≡ {v(m) ∈ H1 (Ω(m)

)

∶ v(m) = 0 ∈ Γ(m)D } (9)
 (m) ≡ {T (m) ∈ H1 (Ω(m)

)

∶ T (m) = T (m)D ∈ Γ(m)D } (10)
The weak formulation of the problem for body m is then: find T (m) ∈  (m) such that

∫Ω(m)
(

k(m)∇T (m) ⋅ ∇v(m) − f (m)v(m)
) dx

+ ∫Γ(m)N

q(m)N v(m) ds + ∫Γ(m)C

q(m)C v(m) ds = 0 (11)

holds for every v(m) ∈  (m). The weak formulation for the full problem is obtained by summing the terms of (11) for
both bodies, which we can write as: find (T (1), T (2)) ∈  (1) ×  (2) such that

2
∑

m=1

[

∫Ω(m)
(

k(m)∇T (m) ⋅ ∇v(m) − f (m)v(m)
) dx + ∫Γ(m)N

q(m)N v(m) ds
]

+ ∫Γ(1)C
q(1)C v(1) ds − ∫Γ(2)C

q(1)C v(2) ds = 0 (12)

holds for all (v(1), v(2)) ∈  (1) ×  (2). Note that, in the last line of (12), we have used (8) to eliminate q(2)C . We
can combine the last two terms of (12) by projecting the values of v(2) onto Γ(1)C along the smoothed outward normal
direction via the operator P (see e.g. Section 2.2.1 of [14] for a discussion of P ) giving

2
∑

m=1

[

∫Ω(m)
(

k(m)∇T (m) ⋅ ∇v(m) − f (m)v(m)
) dx + ∫Γ(m)N

q(m)N v(m) ds
]

+ ∫Γ(1)C
q(1)C

(

v(1) − Pv(2)
) ds = 0 (13)

We note that (13) can be solved as written without introducing a Lagrange multiplier variable, since q(1)C is given in
terms of the temperature fields in the two bodies according to (6). In this case, however, we are interested in methods for
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accurately computing the correct heat flux over non-matchingmeshes, which themortar finite element method provides.
Therefore, as is the standard practice in such methods, we introduce a Lagrange multiplier variable � representing the
normal flux at the contact interface:

� = q(1)C (14)
The Lagrange multiplier formulation of (13) is then: find (T (1), T (2), �) ∈  (1) ×  (2) × such that

2
∑

m=1

[

∫Ω(m)
(

k(m)∇T (m) ⋅ ∇v(m) − f (m)v(m)
) dx + ∫Γ(m)N

q(m)N v(m) ds
]

+ ∫Γ(1)C
�
(

v(1) − Pv(2)
) ds = 0 (15)

∫Γ(1)C

[

� − ℎ
(

T (1) − PT (2)
)]

� ds = 0 (16)

holds for all (v(1), v(2), �) ∈  (1) ×  (2) ×, where  is the Lagrange multiplier space, which is not discussed in
detail here. We note that (16) weakly imposes the condition (14) based on the constitutive relation (6).
Mortar segment-to-segment contact algorithms based on the smoothed nodal normal projection approach are known to
exactly conserve linearmomentum. That is, the total forces on the slave andmaster surfaces are in equilibrium, provided
that the quadrature is carefully performed [10–13]. The angular momentum, on the other hand, is not guaranteed to be
conserved. The amount by which it fails to be conserved should be “small,” and methods which exactly conserve the
angular momentum can be implemented.
Although Galerkin finite element formulations of the primal heat conduction equation (1) generate symmetric systems
of linear algebraic equations, the formulation (15)–(16) produces a block-structured matrix whose off-diagonal blocks
are non-symmetric. This is in contrast to the “classical” Lagrange multiplier method—frequently used for enforcing
both Dirichlet conditions (without modifying the test space) and solution continuity—which produces symmetric off-
diagonal contributions.
Also in contrast to the classical Lagrange multiplier methods, the system (Jacobian) matrix for the formulation (15)–
(16) does not have an indefinite “saddle point problem” structure, and therefore mixed finite element formulations of the
problem are not restricted by LBB stability concerns and stabilized finite element formulations are not required. Finally,
we note that the definiteness of the matrix also ensures a larger universe of preconditioners and Krylov solvers are
applicable to the system (15)–(16). In particular, the algebraic multigrid preconditioner in Hypre [17], BoomerAMG,
appears to work reasonably well for this system of equations despite their asymmetry.

1.2 Nodal normal projection equations

In this section, we discuss the details of solving Eqs. (2.4.5) and (2.4.6) in Yang’s dissertation [13] for the reference
coordinate positions �(2) and �(1), respectively. This approach is also described in the related research article [12]. The
nodal projections are central to the definition of the projection operator P used in deriving the weak formulation of the
multi-body heat conduction problem (15)–(16), since they are used in the definition of the “mortar segments” along
which those integrals are to be computed.

1.2.1 Projection of slave nodes onto master surface

In the notation of Yang, we have:
[

N1(�(2))'
(2)
1 +N2(�(2))'

(2)
2 − '(1)s

]

× n(1)s = 0 (2.4.5)

where the superscript (1) refers to the “slave” surface, (2) refers to the “master” surface, Ni(�(2)) is finite element
basis function i on the master surface evaluated at �(2), '(2)i is node i of the master element, '(1)s is the location of the
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slave node which is being projected onto the master surface, and n(1)s is the outward nodal normal vector at that point.
Eq. 2.4.5 is applicable when the master element into which slave node n(1)s projects has already been found via some
other search algorithm. Letting

x(2) ≡ N1(�(2))'
(2)
1 +N2(�(2))'

(2)
2 (17)

be the physical space location on the master surface of the reference coordinate �(2), we can rewrite (2.4.5) in a poten-
tially simpler form as:

[

x(2) − '(1)s
]

× n(1)s = 0 (18)
Eq. (18) is in general a set of three equations in the single unknown �(2). An approximate solution to this overdetermined
set of equations can be found via the least squares solution method, but we will consider the special case in which the
vectors x(2) −'(1)s and ns lie in the (x1, x2) plane, and therefore their cross product is in the x3-direction only. We can
then obtain an explicit solution to (18), which further reduces to the scalar equation:

u1v2 − u2v1 = 0 (19)
where

u ≡ x(2) − '(1)s (20)
v ≡ n(1)s (21)

SubstitutingN1(�) ≡
1−�
2 ,N2(�) ≡

1+�
2 into (19) and rearranging yields:

�(2) =
−
[

'(2)1,1 + '
(2)
2,1 − 2'

(1)
s,1

]

n(1)s,2 +
[

'(2)1,2 + '
(2)
2,2 − 2'

(1)
s,2

]

n(1)s,1
[

−'(2)1,1 + '
(2)
2,1

]

n(1)s,2 −
[

−'(2)1,2 + '
(2)
2,2

]

n(1)s,1
(22)

where subscripts after commas refer to the spatial coordinate, i.e.
n(1)s ≡

(

n(1)s,1, n
(1)
s,2

)

(23)
'(2)1 ≡

(

'(2)1,1, '
(2)
1,2

)

(24)
etc. A representative configuration in which a slave node is mapped onto the surface of a master element is shown
in Fig. 2. This formula for computing the projection also works when the slave node '(1)s lies directly on the master
surface, i.e. in the case where x(2) = '(1)s , since this configuration satisfies (18). When the master element and the
nodal normal are parallel, the denominator of (22) will be zero. This does not indicate a failure of the method, however,
only that the normal projection of '(1)s cannot possibly lie on the master element in question, and the implementation
should therefore prevent floating point exceptions from being raised in this case.

1.2.2 Inverse-projection of master nodes from slave surface

In the converse case, we have a similar geometric situation, but need to perform an “inverse” mapping in order to
determine where a given node '(2)m on the master surface would have originated from, had it been projected along the
slave surface nodal normal direction. The nonlinear equation to be satisfied in this case is Yang’s Eq. (2.4.6) which we
repeat here:

[

N1(�(1))'
(1)
1 +N2(�(1))'

(1)
2 − '(2)m

]

×
[

N1(�(1))n
(1)
1 +N2(�(1))n

(1)
2

]

= 0 (2.4.6)

The unknown in (2.4.6) is �(1), and, as shown in Fig. 3, n(1)i is the nodal normal at slave surface node i,
x(1) ≡ N1(�(1))'

(1)
1 +N2(�(1))'

(1)
2 (25)
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'(1)s

x(2)'(2)1 '(2)2

n(1)s

Slave

Master

Figure 2: Diagram demonstrating projection of the slave node'(1)s along the nodal normal direction onto an element on
the master surface defined by the nodes ('(2)1 ,'(2)2 ). The solid dots represent nodes in the finite element mesh, the open
dot shows where basis functions on the master surface must be evaluated during mortar segment integral computations.

is the unknown physical-space coordinate of the location where master node '(2)m would have been projected from, and
n(x(1)) ≡ N1(�(1))n

(1)
1 +N2(�(1))n

(1)
2 (26)

is the outward nodal normal vector on the slave surface at that location. Using (25) and (26) allows us to write (2.4.6)
more compactly as:

[

x(1) − '(2)m
]

× n(x(1)) = 0 (27)
It is clear that relation (27) is nonlinear (quadratic) in x(1) which depends on the unknown reference coordinate �(1),
and therefore we do not expect to be able to solve it directly as was the case in (22).

'(1)1 '(1)2x(1)

n1 n2

'(2)m

n(x(1))

Slave

Master

Figure 3: Diagram demonstrating “inverse” projection of the master node '(2)m to the point x(1) where it would have
come from along the slave surface nodal normal direction. The solid dots represent nodes in the finite element mesh,
the open dot shows the endpoint of a mortar segment used for mortar integral evaluation.
Instead, once again assuming that all vectors lie in the (x1, x2) plane and defining

u ≡ x(1) − '(2)m (28)
v ≡ n(x(1)) (29)

and the residual
F (�(1)) ≡ u1v2 − u2v1 (30)

we will use Newton’s method to compute �(1)∗ such that F (�(1)∗ ) = 0 using an initial guess of �(1) = 0. Newton’s method
requires the first derivative of the functional, which in this case is simply

F ′(�(1)) ≡ (u1v′2 + u
′
1v2) − (u2v

′
1 + u

′
2v1) (31)
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where
u′i ≡ N ′

1'
(1)
1,i +N

′
2'

(1)
2,i (32)

v′i ≡ N ′
1n1,i +N

′
2n2,i (33)

for i = 1, 2, whereN ′
1 ≡ −

1
2 andN ′

2 ≡
1
2 .

In practice, we have observed that the Newton iterations typically converge quite quickly (within 1 or 2 steps) and
reliably given the initial guess of �(1) = 0. When the Newton iterations converge to |�(1)| > 1, this indicates that
the master point in question did not come from the slave surface element we are searching, and a different candidate
element should be searched instead. Finally, we observe that master nodes near the “edge” of a non-closed master
surface contour may not inverse-map to any element on the slave surface. This does not indicate a failure of the
method, however, only that the corresponding mortar segment will not have any contribution from the master side.

1.3 Discrete form of mortar integral terms

In this section, we discuss the discrete form of the mortar integral terms in (15) and (16), which for brevity we will
refer to as:

F ≡ ∫Γ(1)C
�
(

v(1) − Pv(2)
) ds (34)

G ≡ ∫Γ(1)C

[

� − ℎ
(

T (1) − PT (2)
)]

� ds (35)

and which arise in the analysis of Section 1.1. The corresponding discrete forms of (34) and (35) are

F ℎ ≡ ∫Γ(1,ℎ)C

�ℎ
(

v(1,ℎ) − Pv(2,ℎ)
) ds (36)

Gℎ ≡ ∫Γ(1)C

[

�ℎ − ℎ
(

T (1,ℎ) − PT (2,ℎ)
)]

�ℎ ds (37)

The discretized unknowns are written in the usual way as sums over the basis functions
T (1,ℎ) =

∑

j∈ (1)
T (1)j N (1)

j (38)

T (2,ℎ) =
∑

j∈ (2)
T (2)j N (2)

j (39)

�ℎ =
∑

j∈
�jMj (40)

where  (1) and  (2), are the sets of temperature (primal) variable degrees of freedom on the slave and master sides of
the contact surface, respectively, and  is the set of the Lagrange multiplier degrees of freedom. N (1)

j , N (2)
j ,Mj arethe corresponding primal and mortar space finite element basis functions. The Lagrange multiplier is always defined

on the slave (1) side, so there is no need to use a superscript for disambiguation. Correspondingly, we have
v(1,ℎ) = N (1)

i , i ∈  (1) (41)
v(2,ℎ) = N (2)

i , i ∈  (2) (42)
�ℎ =Mi, i ∈  (43)

for the test functions. Here we have assumed that the same order and family (e.g. first-order Lagrange) finite elements
are used in both bodies for the primal variable, but allowed for the possibility that the Lagrange multiplier variable may
be discretized with a different basis.
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There will be two residual contributions (one for the master side degrees of freedom, and one for the slave side degrees
of freedom) due to (36). These contributions are given by

F (1,ℎ)i ≡ ∫Γ(1)C
�ℎN (1)

i ds, i ∈  (1) (44)

F (2,ℎ)i ≡ −∫Γ(1)C
�ℎPN (2)

i ds, i ∈  (2) (45)

The corresponding Jacobian contributions are
)F (1,ℎ)i
)�j

= ∫Γ(1)C
MjN

(1)
i ds, i ∈  (1), j ∈  (46)

)F (2,ℎ)i
)�j

= −∫Γ(1)C
MjPN

(2)
i ds, i ∈  (2), j ∈  (47)

Likewise, the residual contribution of (37) due to Lagrange multiplier test function i is given by

Gℎi ≡ ∫Γ(1)C

[

�ℎ − ℎ
(

T (1,ℎ) − PT (2,ℎ)
)]

Mi ds, i ∈  (48)

with corresponding Jacobian contributions
)Gℎi
)T (1)j

= −∫Γ(1)C
ℎMiN

(1)
j ds, i ∈ , j ∈  (1) (49)

)Gℎi
)T (2)j

= ∫Γ(1)C
ℎMiPN

(2)
j ds, i ∈ , j ∈  (2) (50)

)Gℎi
)�j

= ∫Γ(1)C
MiMj ds, i, j ∈  (51)

Terms (44), (46), (49), and (51) depend only on values from the slave side, and are straightforward to compute using the
existing discretization of the slave boundary. On the other hand, the terms (45), (47), (48), and (50) depend on values
from both the slave and master sides, and quadrature errors due to the integration of locally piecewise continuous
functions will result if we attempt to compute the integral using only the slave side discretization.

1.4 Computing the mortar integral: Potential inaccuracies

To understand the potential accuracy issues involved with computing the mortar integral contributions, we consider a
simple example in which ameshwith equal-sized elements is “perfectly unaligned” with amesh of equal-sized elements
on the other side of the contact interface as in Fig. 4. For simplicity, we also assume the mortar and primal variables
are discretized with the same finite element basis, so thatMi = N

(1)
i ∀i, and that the heat transfer coefficient is simply

ℎ = 1 in the following discussion.
In this case, the nodal normal projection operation is trivial, and the master side basis functions are defined piecewise
on slave side element Ωe as:

N (2)
a =

{

1 + �(1)∕2, −1 ≤ �(1) ≤ 0

1 − �(1)∕2, 0 ≤ �(1) ≤ 1
(52)

N (2)
b =

{

0 −1 ≤ �(1) ≤ 0

�(1)∕2, 0 ≤ �(1) ≤ 1
(53)
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Ωe
a b

Ωe

Slave(1)
a b

N (2)
a

a b

N (2)
b

a b

Master(2)

Figure 4: Master side basis functions N (2)
a and N (2)

b on slave side element Ωe in the perfectly unaligned mesh case.
Two of the three master side basis functions with support on Ωe are shown, the last one is symmetric toN (2)

b .

while the slave side basis functions are defined in the usual way as

N (1)
a =

1 − �(1)

2
(54)

N (1)
b =

1 + �(1)

2
(55)

The master/slave contributions due to e.g. (47) (ignoring the sign) can be organized in matrix form as:

Kms =
⎡

⎢

⎢

⎣

∫Ωe N
(2)
a N (1)

a ds ∫Ωe N
(2)
a N (1)

b ds
∫Ωe N

(2)
b N (1)

a ds ∫Ωe N
(2)
b N (1)

b ds
⎤

⎥

⎥

⎦

(56)

The true values (using exact integration) of Kms are given by

Kms =
ℎe
2

⎡

⎢

⎢

⎣

3
4

3
4

1
24

5
24

⎤

⎥

⎥

⎦

(57)

where ℎe is the length of element Ωe. Using standard two-point quadrature, on the other hand, results in

K̃ms ≈
ℎe
2

[

0.711325 0.711325

0.061004 0.227671

]

(58)

This corresponds to a relative error
‖Kms − K̃ms‖∞

‖Kms‖∞
≈ 5% (59)

Although relatively small in magnitude, there is no way to know, for a given problem, how strongly this error will affect
the solution, and it will cause the usual global conservation properties of the finite element method to be lost. For
instance, in contact mechanics problems, linear momentum will not be conserved if the mortar integrals are computed
in this way; i.e. spurious momentum will be introduced in the gap between the two subdomains. Likewise, for thermal
contact problems, the total energy will not be conserved.

1.5 Computing the mortar integral: Simple examples

We next consider in detail the computation of mortar segment contributions for the simple, perfectly unaligned mesh
in Fig. 5. In particular, we will compute the slave/slave and master/slave element stiffness contributions for segment
S in Fig. 5. In this example, we assume the slave and master reference coordinates are aligned in opposite directions
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so that �(1)a = 0, �(1)b = 1, �(2)a = 1, �(2)b = 0. As discussed in Yang’s dissertation [13], we parameterize the segment S
with the secondary reference variable −1 ≤ � ≤ 1 such that

�(1)(�) = �(1)a
1 − �
2

+ �(1)b
1 + �
2

(60)
�(2)(�) = �(2)a

1 − �
2

+ �(2)b
1 + �
2

(61)

and again assume that the mortar and primal variables are discretized with the same finite element basis, which allows
us to write the slave/slave and master/slave Jacobian contributions due to this segment as

Kss(i, j) ≡ ∫S
N (1)
i N (1)

j ds = ℎseg
2 ∫

1

−1
N (1)
i (�(1)(�))N (1)

j (�(1)(�)) d� (62)

Kms(i, j) ≡ ∫S
N (2)
i N (1)

j ds = ℎseg
2 ∫

1

−1
N (2)
i (�(2)(�))N (1)

j (�(1)(�)) d� (63)

where ℎseg is the length of segment S, and the local indices i, j = 1, 2 correspond to the basis functions of the (single)
slave and master elements which contribute to this segment (see Fig. 5). The basis functions are defined exactly as
in (54) and (55), with indices a and b corresponding to 1 and 2. The method of constructing the mortar segments
guarantees that a unique element from each side contributes values to each segment, and that the integrands (62)
and (63) are continuous (and therefore exactly integrable using, in this case, a two-point quadrature rule).

S

�(1)a �(1)b

�(2)a �(2)b

Slave

Master

Figure 5: Perfectly unaligned mesh with five elements used for verification (left) and mortar segment detail for the
segment marked S (right) with endpoints �(1)a = 0, �(1)b = 1, �(2)a = 1, �(2)b = 0. Dark lines indicate the faces of the
elements whose degrees of freedom S contributes to, light grey lines indicate neighboring element faces which are not
involved in the segment computation.

In this simple example, the slave/slave and master/slave Jacobian contributions can be computed explicitly as follows:
the segment reference coordinate values are given by (60) and (61) as

�(1)(�) =
1 + �
2

(64)
�(2)(�) =

1 − �
2

(65)
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and consequently the slave and master side basis functions in segment reference coordinates are

N (1)
1 =

1 − �(1)(�)
2

=
1 − �
4

(66)

N (1)
2 =

1 + �(1)(�)
2

=
3 + �
4

(67)

N (2)
1 =

1 − �(2)(�)
2

=
1 + �
4

(68)

N (2)
2 =

1 + �(2)(�)
2

=
3 − �
4

(69)
This leads to the following slave/slave

Kss(1, 1) =
ℎseg
2 ∫

1

−1

(1 − �)2

16
d� = ℎseg

12
(70)

Kss(1, 2) = Kss(2, 1) =
ℎseg
2 ∫

1

−1

(1 − �)(3 + �)
16

d� = ℎseg
6

(71)

Kss(2, 2) =
ℎseg
2 ∫

1

−1

(3 + �)2

16
d� = ℎseg 712 (72)

and master/slave

Kms(1, 1) =
ℎseg
2 ∫

1

−1

(1 + �)(1 − �)
16

d� = ℎseg
24

(73)

Kms(1, 2) = Kms(2, 1) =
ℎseg
2 ∫

1

−1

(1 + �)(3 + �)
16

d� = ℎseg 524 (74)

Kms(2, 2) =
ℎseg
2 ∫

1

−1

(3 − �)(3 + �)
16

d� = ℎseg 1324 (75)

Jacobian contributions. We note that the master/slave Jacobian contribution is not symmetric in general, it simply
happens to be in this particular case. In summary, we have

Kss =
ℎseg
24

[

2 4
4 14

]

Kms =
ℎseg
24

[

1 5
5 13

]

(76)

and, although the values above were obtained using exact integration, it is easy to verify that the same result can be
computed using two-point Gaussian quadrature since the integrands are continuous.

1.6 Test cases

In the following subsections, we verify the correctness and accuracy of the proposed multibody heat conduction finite
element formulation using the following test problem:

−∇2u + u = f ∈ Ω (77)
)u
)n

= g ∈ )Ω (78)

where Ω =
(

− 12 ,
1
2

)2 is the unit square centered at the origin, and the forcing f = −4 + x2 + y2 is chosen to give the
true solution u = x2 + y2 in the single-body case. The Neumann boundary data g = −1 is chosen to be consistent with
the true solution on the entire boundary.
In the following examples, we cut the domain described above in various ways, and introduce a small gap to implement
the multi-body heat transfer problem. Therefore, the true solution will not actually be u = x2 + y2 in these examples,
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and we do not compute a posteriori estimates of the error. The heat transfer coefficient is taken to be

ℎ = k
l

(79)

where k = .03 is a constant, and l is the width of the gap between the bodies.
In the following sections, we will refer to discretizations which use a piecewise continuous linear approximation for the
primal variable combined with a piecewise discontinuous constant approximation for the Lagrange multiplier variable
as P 1 − P 0 discretizations, and to discretizations that use a continuous linear Lagrange multiplier approximation as
P 1−P 1 discretizations. In the present work, we do not consider quadratic (P 2) approximations for the primal variable,
however these discretizations are of interest in future work.

1.6.1 Flat interface

In this test case, a gap of width .01 is introduced along the plane x = 0 in Ω, as shown in Fig. 6a. The left side of the
domain is meshed with three-noded triangular elements while the right side is mesh with four-noded quadrilaterals.
The left side of the domain is (arbitrarily chosen to be the slave side. The solution computed on this split domain is
shown in Fig. 6b. The contour lines of the solution are approximately aligned along the gap in this case since the flux
of the true solution is nearly zero in the gap. The flux solutions on successively refined grids are shown in Fig. 6c for
the P 1 − P 0 discretization, and 6d for the P 1 − P 1 discretization.
We expect the true flux to converge to a constant value in this case, which is proportional to the size of the gap. Both
the P 1 − P 0 and P 1 − P 1 discretizations of the flux exhibit small numerical oscillations, both in the interior of the
mesh, and near the boundary, but the scale of these oscillations is quite small, and they are damped out as the mesh is
refined. Both discretizations appear to be of comparable accuracy as the mesh is refined, but the P 1−P 1 discretization
has more error than the P 1 − P 0 discretization on the coarsest mesh. Both methods required a similar number of
GMRES iterations to solve, and this number grew only modestly under mesh refinement while using a standard ILU(1)
preconditioner.

1.6.2 Quarter-circle interface

In this test case, we introduce a quarter-circular gap in the domain Ω corresponding to concentric circles centered at
(−1∕2,−1∕2) with radii R = 0.7 and R =

√

2∕2. The coarse level mesh for this case, which has approximately 20
elements along the curved interface, is shown in Fig. 7a. We choose the R = 0.7 surface as the slave side, and mesh
the inside of the circular region with three-noded triangular elements and the outside with four-noded quadrilaterals.
The solution computed on this domain is shown in Fig. 7b, and in this case there is a nonzero flux along the entire
quarter-circular arc, so we do not expect the temperature fields on either side of the gap to be continuous as in the flat
interface case.
The computed fluxes are plotted for a sequence of refined grids in Fig. 7c for the P 1 − P 0 discretization, and 7d for
the P 1 − P 1 discretization. It appears that both discretizations converge to same true solution, and, in contrast to the
previous case, we do not observe any obvious numerical oscillations in this case, although that may simply be due to
the fact that the flux is overall much larger in this test. The biggest error in the flux occurs near the x = −0.5 limit of the
domain for both discretizations, but this error quickly converges under mesh refinement. As in the previous case, the
linear systems associated to both the P 1 −P 0 and P 1 −P 1 discretizations were solved in a modest number of GMRES
iterations using both the ILU(1) and BoomerAMG preconditioners, as well as the direct -pc_type lu solver which is
distributed with PETSc.
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2 AugmentedLagrangeMultiplierMethod forMechanical Contact Enforce-
ment

2.1 Introduction

In the current version of BISON, penalty and kinematic formulations are implemented to enforce node-to-surface con-
tact constraints. In the case of penalty enforcement, the normal contact force is computed as a product of a penalty
parameter and the penetration distance. The tangential contact force is solved to satisfy the penalized slip rule. The
accuracy of the contact enforcement improves as the penalty parameter is increased. However, with very large penalty
parameters, the linear system suffers from ill-conditioning and becomes difficult to solve. The use of a penalty formu-
lation usually results in some amount of penetration and makes the simulation results less accurate. On the other hand,
the kinematic formulation transfers the residual from the slave node to the master surface and penalizes the iterative
gap such that penetration is removed in the converged solution. The kinematic formation works robustly in BISON for
both frictionless and glued contact. In FY16, a hybrid formulation was developed to further improve the robustness of
frictional contact. The hybrid formulation uses a kinematic approach to strictly enforce the non-penetration condition
and a penalty method in the tangential direction to enforce the slipping constraints. Although the hybrid formulation
gives more robust solutions, it still results in some errors because of the penalty regularization in the tangential direction
which permits a small amount of relative sliding before slip begins.
The contact module in MOOSE has been significantly improved over the past few years, but it still suffers several
numerical issues. As an alternative formulation, the Augmented Lagrangian Method (ALM) has enjoyed considerable
success in the treatment of contact problems and it is desirable to implement this formulation inMOOSE as an additional
alternative to the present methods. The ALM approach combines either the penalty method or the constitutive law with
Lagrange multiplier methods and results in robust solutions and smaller errors.

2.2 Algorithmic Developments

The ALM algorithm implemented in MOOSE is demonstrated in Figure 8. In the first iteration in a given time
step, Γstick is taken to be all of Γ and further amendments to Γstick are made in the augmentation phase, according
to the current state of the multipliers. The Coulomb frictional contact condition is enforced in the augmentation
phase which makes the nonlinear solve converge much better. The nested ALM is implemented as a customized
FEProblem, called AugmentedLagrangianContactProblem, which checks for the constraint satisfaction and de-
cides if convergence is achieved or to repeat the step. The related parameters called penetration_tolerance,
tangential_increment_stick_tolerance and tangential_friction_force_tolerance correspond to TOL1,
TOL2 and TOL3 in Figure 8, respectively.

2.3 Numerical Examples

2.3.1 Sliding Sphere (3D)

Hertz contact between a sphere and a rigid surface is a classic problem within contact mechanics. A 3D model was
setup in BISON and the geometry and mesh is shown in Figure 9. The rigid block is fixed in all directions and normal
and tangential displacement boundary conditions are applied to the surface nodes of the half sphere.
This problem was previously run under frictional contact conditions with the penalty method and tangential penalty
(i.e., hybrid) formulation with certain limitations. To converge, the penalty parameters have to be relatively small and
result in a significant amount of penetration. In addition, the incremental loading is chosen to be small and the sphere
can only slip over a small tangential distance. In contrast, the newly implemented ALM formulation can run with five
times larger loading increments and displace the sphere almost to the end of the rigid block without any convergence
issues.

Consortium for Advanced Simulation of LWRs 18 CASL-U-2017-1430-000



Contact Algorithm Development

Initialization
set �(0)N = ⟨�N + �Ng⟩ from last time step,

Δ�(0)T = 0,
Γ(0)stick = Γ.
k = 0

Nonlinear solve for u(k)n+1:
G(u(k)n+1, �u) + ∫

Γ

[⟨

�(k)N + �Ng(u
(k)
n+1)

⟩

�u ⋅ n + tT (u
(k)
n+1) ⋅ �uT

]

dΓ = 0

where tT (u
(k)
n+1) =

{

tTn + Δ�
(k)
T + �TΔu

(k)
T if x ∈ Γ(k)stick

tTn + Δ�
(k)
T otherwise

Check for constraint satisfaction:
1. g(u(k)n+1) ≤ TOL1 for all x ∈ Γ

2. ‖‖
‖

uTn+1 − uTn
‖

‖

‖

≤ TOL2 for all x ∈ Γstick
3. ‖

‖

tN‖‖ ≤ (1 + TOL3)�
⟨

�Ng + �
(k)
N

⟩

for all x ∈ Γ

Augment and update Γstick:
�(k+1)N =

⟨

�(k)N + �Ng(u
(k)
n+1)

⟩

If stick, Δ�(k+1)T = Δ�(k)T + �TΔu
(k)
T

else slip, Δ�(k+1)T =
tTn+Δ�

(k)
T +�TΔu

(k)
T

‖

‖

‖

tTn+Δ�
(k)
T +�TΔu

(k)
T
‖

‖

‖

��(k+1)N − tTn
k ← k + 1

Converge, EXIT

no

yes

Figure 8: Nested augmented Lagrangian algorithm for frictional contact in MOOSE.

The simulation was run with a frictional coefficient of 1.0. A displacement boundary condition is applied at the top
surface of the sphere. The contour of �zz shown in Figure 10 is fairly smooth. The quantity of reaction tangential force
divided by the normal force is plotted in Figure 11. In the first stage, the sphere is push down and does not have any
tangential force. In the second stage, the reaction tangential force is less than the frictional capacity and results in a
sticking condition. In the last stage, the sphere starts to slip and the tangential force stays the same as the normal force
as predicted by the coulomb friction law.

Calvert Cliffs

The Calvert Cliffs assessment test cases are a useful set of full length 2D RZ models for testing newly implemented
features in BISON. The UFE019 test case used in this instance is a full length rod (∼ 3.8 m) irradiated for four cycles
in reactor and then discharged with a burnup of ∼ 47 GWd∕MTU. A range of contact conditions have been used to
model the fuel/cladding contact for this case are the effects on the cladding elongation is shown in Figure 12.
As expected the frictionless case underpredicts the cladding elongation due to the lack of frictional interaction between
the fuel and cladding. The glued contact case predicts the highest elongation during operation since the fuel and
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Figure 9: Geometry and mesh of 3D sphere sliding on block problem.

Figure 10: Stress zz contour of indenter.

cladding are “bonded” once they come into contact. However, during the cool down (i.e., power down) the fuel contracts
and pulls the cladding as well to again underpredict the measured elongation. The two contact models using Coulomb
friction (� = 0.4) with different implementations produce the most realistic behavior. Both the tangential penalty
and augmented Lagrange methods match the glued contact behavior during the in-reactor phase of the simulation, but
allow some relative sliding of the fuel and cladding during the cool down. Therefore, the final cladding elongation
predictions for those models is much closer to the measured value.
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3 Improvements to Contact Search Robustness

Node-to-surface contact is the widely used contact type in BISON for simulating contact between a fuel rod and the
cladding. In these cases, the outer surface of the fuel pellets form the slave boundary, which is discretized into a set of
slave nodes, and the inner surface of the cladding forms the master boundary, which is discretized into a set of element
faces. The aim of contact search algorithms is to efficiently and robustly determine the master element face at which a
given slave node is likely to come in contact.
In the current approach, a contact patch, which is a subset of the master boundary, is initially saved for each slave node.
This patch contains the k (patch size) nodes in the master boundary that are closest to the slave node. In the subsequent
time steps or iterations, the one master node that is closest to the slave node is obtained from among the nodes in this
saved contact patch. All the master element faces that are connected to this closest master node are then checked to see
if the slave node is in contact with any of these master element faces. If no contact is detected among these selected
master element faces, the slave node is determined as not in contact with the master boundary.
The method of saving off a contact patch for each slave node and running subsequent contact searches on only this
saved patch reduces the computational time as the whole master boundary does not have to be searched at every time
step/iteration. But as the slave/master boundaries move during the simulation, the contact patch has to be updated
accordingly to accurately detect contact. The users are currently given two options of updating the patch — auto and
always. In the ‘always’ option, the contact patch for all slave nodes is updated at the start of every time step. This can
be computationally expensive. In the ‘auto’ option, the contact patch is updated only when the closest master node for
any of the slave nodes fall close to the edge of the contact patch. This check to determine if the closest master node is
near the edge of the contact patch (and patch update if required) is performed at the start of every time step. In certain
fuel problems, there can be substantial slipping between the fuel pellets and cladding from one nonlinear iteration to
the next within a given time step. In these situations, updating the patch only at the start of the time step may lead to
erroneous contact detection, because slave nodes may have slid out of the patch within a step. This can happen even
if the patch is updated every step if there is large sliding within a step. This is more likely to occur with more refined
meshes, becuase the same relative mesh movement occurs over a larger number of faces.
To improve contact search efficiency and robustness, the following modifications have been made to the contact search
algorithm:

3.1 Use of k-d trees for nearest neighbor search

The computational time required to create the contact patch increases with an increase in the number of nodes in the
slave and master boundary, and with an increase in the contact patch size. The brute force method to find the k nearest
neighbors to a given slave node from the master boundary is to first find the distance between the slave node and each
master node. These distances then have to be sorted in increasing order and the first k nodes then form the contact
patch for that slave node. The nearest neighbor search that was used in MOOSE/BISON before the work described
here employed a priority queue data structure which optimizes the distance sorting time and works faster than the brute
force method. Both these methods are more suitable when fewer slave nodes are present. K-d trees are a much faster
search method for problems with larger number of nodes in the slave and master boundary.
K-d trees work by dividing the master nodes into bins/leaves at different depths. For example, if the master boundary
is a rectangle as shown in Fig. 13, it is first divided into two bins (left and right at depth 1). These bins can then be
subdivided into two more bins (depth 2) and this subdivision continues until the maximum number of nodes in each
bin/leaf of the tree is less than a user specified number. Once this tree is created, the nearest neighbor search for each
slave node is executed by traversing down along the tree starting at depth 1. The Nanoflann k-d tree library [18] has
been used to improve the contact patch creation in MOOSE. This approach improves contact search time by a factor
of 1.38 and 1.45, respectively, for the case where 1000 and 2000 nodes, respectively, are considered in both the master
and slave boundaries. When 2000 nodes are present in the slave boundary and 30,000 nodes are present in the master
boundary, the k-d tree approach is 90 times faster than the priority queue approach.
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Figure 13: Sample k-d tree for a simplistic rectangular master boundary. The brown region is the region represented
by given bin/leaf.

3.2 Updating contact patch during nonlinear iterations

As mentioned earlier, the contact patch could only be updated at the start of the time step using the ‘always’ or ‘auto’
patch update strategy. To avoid cases where the slave node slips outside the contact patch during nonlinear iterations
within a given time step, a new patch update strategy has been added that checks and updates the patch in every nonlinear
iteration for a subset of the slave nodes. All the slave nodes which are not in contact with the master boundary are placed
in a set of ‘recheck_slave_nodes’. The nearest neighbor search is called to update the patch for all the nodes contained
in ‘recheck_slave_nodes’. The closest master node and all the element faces connected to closest master node are then
obtained for each of these slave nodes and contact detection is re-run on these new master faces. Some of these nodes
in the ‘recheck_slave_nodes’ set may not actually be in contact with a face, but this ensures that contact is correctly
enforced on any nodes that are in contact with a face. When used with the k-d tree, this approch ensures that contact is
accurately detected during all stages of the simulation with a minimal increase in computational effort.
These improvements in the contact search were tested on a 2-D fuel problem with 10 fuel pellets (Figure 14) with
frictionless contact between the fuel and the clad. The slave (outer surface of fuel pellets) and master boundary (inner
surface of clad) both contain 320 nodes. Different contact options were tested with changes in patch size and patch
update strategies. The solution from the run with ‘always’ patch update strategy with patch size of 10 is assumed to
be the correct solution against which the solution from the other cases are compared (because the patch is sufficiently
large to accomodate the sliding in a step). The solution quantities compared at each time step are average temperature
of the fuel rod and cladding, cladding and pellet volume, fission gas produced and released, gas volume, flux from clad
and fuel, total and input rod power.
Table 1 gives the time taken to run the fuel-clad contact problem using 10 processors with 3 different patch update
strategies (always, auto and the newly added nonlinear iteration patch update strategy) and with 3 different patch sizes
(1, 5 and 10). For all the cases except the ‘auto’ and ‘always’ patch update strategy with patch size of 1, the results
match well with the correct solution with relative differences below 1e-5. There are small differences in the time
taken in running the different cases. The timings show that for a given patch size, the ‘nonlinear updte‘ strategy is
computationally less expensive than the other two strategies. This is probably because in this strategy, the patch is
updated only for a small subset of the slave nodes – those that have moved outside the patch – as opposed to the other
two strategies where the patch is regularly updated for all the 320 slave nodes. The nonlinear patch update strategy also
works well with arbitrary patch sizes while the other two methods do not work with a patch size of 1 because nodes
easily slide out of that patch during the solution of a time step.
Using a large patch is detrimental to performance on large problems because storage is pre-allocated for off-diagonal
Jacobian entries related to the contact constraints for all elements in the patch. For much larger contact problems, using
the nonlinear iteration patch update strategy with a small patch size will likely give greatly improved performance
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Figure 14: 2D problem with 10 discrete fuel pellets. During the course of the simulation, the fuel pellets (red) expand
and come in contact with the cladding (blue).

Table 1: Timing comparison of contact patch update strategies on fuel-clad contact problem
Patch update strategy Patch size = 1 Patch size = 5 Patch size = 10
always Failed 627.11 s 625.56 s
auto Failed 606.2 s 614.1 s
nonlinear iteration 596.97s 603.75 s 611.45 s

relative to the current strategy of using a sufficiently large patch to prevent sliding outside the patch.

Consortium for Advanced Simulation of LWRs 24 CASL-U-2017-1430-000



Contact Algorithm Development

4 Summary and Future Work

This report documents improvements to BISON’s contact enforcement algorithms in three areas: mortar enforcement
of thermal contact, augmented Lagrange enforcement of mechanical contact, and contact search improvements. The
mortar method for thermal contact described here has currently only been demonstrated on fairly simple demonstration
problems, but is near to a point in development where it can be applied to thermal contact enforcement in 2D fuel
simulations. The results shown here demonstrate that this method has good rates of convergence, without oscillations in
the solution. Future development will focus on applying this for thermal contact enforcement in LWR fuel performance
models, and enabling the use of this technique on 3D models. In addition, this method can also be applied to improve
the accuracy and robustness of mechanical contact enforcement.
The Augmented Lagrange Multiplier approach has been implemented and applied to two problems with frictional
contact, a 3D Hertz contact model and a 2D full-length fuel rod. This algorithm gave robust convergence on these
models, both of which have been challenging with existing algorithms in BISON. This code is ready to be tested to
assess its performance on a wider range of BISON PCMI problems of interest, both 2D and 3D.
The improvements to the contact search address longstanding issues where contact could potentially not be enforced on
nodes that slide too far during a time step, which can occur during a PCMI simulation. This can also potentially improve
performance by permitting the use of a smaller patch size, which decreases the number of pre-allocated off-diagonal
Jacobian entries. Work is underway to allow for those off-diagonal entries to be dynamically added or removed from
the solver within a time step as the set of contact constraints evolves.
The combination of the work described here in three independent areas is expected to greatly improve the accuracy and
robustness of the algorithms used to enforce both thermal and mechanical contact in BISON. These developments are
in varying levels of maturity. Mortar enforcement is an entirely new capability, and the algorithms described here were
developed from the ground-up, and are not yet committed to the code base. Initial results look very promising, but
this is a capability that still needs more work before it is ready for full production. The augmented Lagrange method
builds on the existing node/face enforcement, and is ready for expanded testing. The core components of the search
improvements have been committed to the code base. The next steps in development for those search improvments is to
perform expanded testing on larger models, and change the default code behavior based on findings from that testing.
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